(0) Obligation:

The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2).


The TRS R consists of the following rules:

monus(S(x'), S(x)) → monus(x', x)
gcd(x, y) → gcd[Ite](equal0(x, y), x, y)
equal0(a, b) → equal0[Ite](<(a, b), a, b)

The (relative) TRS S consists of the following rules:

<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
gcd[Ite](False, x, y) → gcd[False][Ite](<(x, y), x, y)
gcd[Ite](True, x, y) → x
gcd[False][Ite](False, x, y) → gcd(y, monus(y, x))
gcd[False][Ite](True, x, y) → gcd(monus(x, y), y)
equal0[Ite](False, a, b) → False
equal0[Ite](True, a, b) → equal0[True][Ite](<(b, a), a, b)
equal0[True][Ite](False, a, b) → False
equal0[True][Ite](True, a, b) → True

Rewrite Strategy: INNERMOST

(1) RelTrsToTrsProof (UPPER BOUND(ID) transformation)

transformed relative TRS to TRS

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2).


The TRS R consists of the following rules:

monus(S(x'), S(x)) → monus(x', x)
gcd(x, y) → gcd[Ite](equal0(x, y), x, y)
equal0(a, b) → equal0[Ite](<(a, b), a, b)
<(S(x), S(y)) → <(x, y)
<(0, S(y)) → True
<(x, 0) → False
gcd[Ite](False, x, y) → gcd[False][Ite](<(x, y), x, y)
gcd[Ite](True, x, y) → x
gcd[False][Ite](False, x, y) → gcd(y, monus(y, x))
gcd[False][Ite](True, x, y) → gcd(monus(x, y), y)
equal0[Ite](False, a, b) → False
equal0[Ite](True, a, b) → equal0[True][Ite](<(b, a), a, b)
equal0[True][Ite](False, a, b) → False
equal0[True][Ite](True, a, b) → True

Rewrite Strategy: INNERMOST

(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

monus(S(z0), S(z1)) → monus(z0, z1)
gcd(z0, z1) → gcd[Ite](equal0(z0, z1), z0, z1)
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
gcd[Ite](False, z0, z1) → gcd[False][Ite](<(z0, z1), z0, z1)
gcd[Ite](True, z0, z1) → z0
gcd[False][Ite](False, z0, z1) → gcd(z1, monus(z1, z0))
gcd[False][Ite](True, z0, z1) → gcd(monus(z0, z1), z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
<'(0, S(z0)) → c4
<'(z0, 0) → c5
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[ITE](True, z0, z1) → c7
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](False, z0, z1) → c10
EQUAL0[ITE](True, z0, z1) → c11(EQUAL0[TRUE][ITE](<(z1, z0), z0, z1), <'(z1, z0))
EQUAL0[TRUE][ITE](False, z0, z1) → c12
EQUAL0[TRUE][ITE](True, z0, z1) → c13
S tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
<'(0, S(z0)) → c4
<'(z0, 0) → c5
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[ITE](True, z0, z1) → c7
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](False, z0, z1) → c10
EQUAL0[ITE](True, z0, z1) → c11(EQUAL0[TRUE][ITE](<(z1, z0), z0, z1), <'(z1, z0))
EQUAL0[TRUE][ITE](False, z0, z1) → c12
EQUAL0[TRUE][ITE](True, z0, z1) → c13
K tuples:none
Defined Rule Symbols:

monus, gcd, equal0, <, gcd[Ite], gcd[False][Ite], equal0[Ite], equal0[True][Ite]

Defined Pair Symbols:

MONUS, GCD, EQUAL0, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0[TRUE][ITE]

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing nodes:

EQUAL0[TRUE][ITE](True, z0, z1) → c13
<'(z0, 0) → c5
GCD[ITE](True, z0, z1) → c7
EQUAL0[TRUE][ITE](False, z0, z1) → c12
<'(0, S(z0)) → c4
EQUAL0[ITE](False, z0, z1) → c10

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

monus(S(z0), S(z1)) → monus(z0, z1)
gcd(z0, z1) → gcd[Ite](equal0(z0, z1), z0, z1)
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
gcd[Ite](False, z0, z1) → gcd[False][Ite](<(z0, z1), z0, z1)
gcd[Ite](True, z0, z1) → z0
gcd[False][Ite](False, z0, z1) → gcd(z1, monus(z1, z0))
gcd[False][Ite](True, z0, z1) → gcd(monus(z0, z1), z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(EQUAL0[TRUE][ITE](<(z1, z0), z0, z1), <'(z1, z0))
S tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(EQUAL0[TRUE][ITE](<(z1, z0), z0, z1), <'(z1, z0))
K tuples:none
Defined Rule Symbols:

monus, gcd, equal0, <, gcd[Ite], gcd[False][Ite], equal0[Ite], equal0[True][Ite]

Defined Pair Symbols:

MONUS, GCD, EQUAL0, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE]

Compound Symbols:

c, c1, c2, c3, c6, c8, c9, c11

(7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

monus(S(z0), S(z1)) → monus(z0, z1)
gcd(z0, z1) → gcd[Ite](equal0(z0, z1), z0, z1)
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
gcd[Ite](False, z0, z1) → gcd[False][Ite](<(z0, z1), z0, z1)
gcd[Ite](True, z0, z1) → z0
gcd[False][Ite](False, z0, z1) → gcd(z1, monus(z1, z0))
gcd[False][Ite](True, z0, z1) → gcd(monus(z0, z1), z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
S tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
EQUAL0(z0, z1) → c2(EQUAL0[ITE](<(z0, z1), z0, z1), <'(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
K tuples:none
Defined Rule Symbols:

monus, gcd, equal0, <, gcd[Ite], gcd[False][Ite], equal0[Ite], equal0[True][Ite]

Defined Pair Symbols:

MONUS, GCD, EQUAL0, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE]

Compound Symbols:

c, c1, c2, c3, c6, c8, c9, c11

(9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

monus(S(z0), S(z1)) → monus(z0, z1)
gcd(z0, z1) → gcd[Ite](equal0(z0, z1), z0, z1)
equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
gcd[Ite](False, z0, z1) → gcd[False][Ite](<(z0, z1), z0, z1)
gcd[Ite](True, z0, z1) → z0
gcd[False][Ite](False, z0, z1) → gcd(z1, monus(z1, z0))
gcd[False][Ite](True, z0, z1) → gcd(monus(z0, z1), z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:none
Defined Rule Symbols:

monus, gcd, equal0, <, gcd[Ite], gcd[False][Ite], equal0[Ite], equal0[True][Ite]

Defined Pair Symbols:

MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0

Compound Symbols:

c, c1, c3, c6, c8, c9, c11, c4

(11) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

gcd(z0, z1) → gcd[Ite](equal0(z0, z1), z0, z1)
gcd[Ite](False, z0, z1) → gcd[False][Ite](<(z0, z1), z0, z1)
gcd[Ite](True, z0, z1) → z0
gcd[False][Ite](False, z0, z1) → gcd(z1, monus(z1, z0))
gcd[False][Ite](True, z0, z1) → gcd(monus(z0, z1), z1)

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:none
Defined Rule Symbols:

equal0, equal0[Ite], <, equal0[True][Ite], monus

Defined Pair Symbols:

MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0

Compound Symbols:

c, c1, c3, c6, c8, c9, c11, c4

(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
We considered the (Usable) Rules:

monus(S(z0), S(z1)) → monus(z0, z1)
And the Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(<(x1, x2)) = 0   
POL(<'(x1, x2)) = 0   
POL(EQUAL0(x1, x2)) = 0   
POL(EQUAL0[ITE](x1, x2, x3)) = 0   
POL(False) = [2]   
POL(GCD(x1, x2)) = x1 + [2]x2   
POL(GCD[FALSE][ITE](x1, x2, x3)) = x2 + [2]x3   
POL(GCD[ITE](x1, x2, x3)) = x2 + [2]x3   
POL(MONUS(x1, x2)) = x1   
POL(S(x1)) = [2] + x1   
POL(True) = 0   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(equal0(x1, x2)) = [3] + [3]x1   
POL(equal0[Ite](x1, x2, x3)) = [2]   
POL(equal0[True][Ite](x1, x2, x3)) = [2]x1   
POL(monus(x1, x2)) = 0   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:

GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
Defined Rule Symbols:

equal0, equal0[Ite], <, equal0[True][Ite], monus

Defined Pair Symbols:

MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0

Compound Symbols:

c, c1, c3, c6, c8, c9, c11, c4

(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
We considered the (Usable) Rules:

<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
<(0, S(z0)) → True
<(S(z0), S(z1)) → <(z0, z1)
And the Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [1]   
POL(<(x1, x2)) = x1   
POL(<'(x1, x2)) = 0   
POL(EQUAL0(x1, x2)) = x1   
POL(EQUAL0[ITE](x1, x2, x3)) = x1   
POL(False) = 0   
POL(GCD(x1, x2)) = x1 + x2   
POL(GCD[FALSE][ITE](x1, x2, x3)) = x3   
POL(GCD[ITE](x1, x2, x3)) = x3   
POL(MONUS(x1, x2)) = 0   
POL(S(x1)) = x1   
POL(True) = [1]   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(equal0(x1, x2)) = 0   
POL(equal0[Ite](x1, x2, x3)) = 0   
POL(equal0[True][Ite](x1, x2, x3)) = 0   
POL(monus(x1, x2)) = 0   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:

GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
Defined Rule Symbols:

equal0, equal0[Ite], <, equal0[True][Ite], monus

Defined Pair Symbols:

MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0

Compound Symbols:

c, c1, c3, c6, c8, c9, c11, c4

(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
We considered the (Usable) Rules:

<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
<(0, S(z0)) → True
<(S(z0), S(z1)) → <(z0, z1)
And the Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [1]   
POL(<(x1, x2)) = x1   
POL(<'(x1, x2)) = 0   
POL(EQUAL0(x1, x2)) = 0   
POL(EQUAL0[ITE](x1, x2, x3)) = 0   
POL(False) = 0   
POL(GCD(x1, x2)) = x1 + x2   
POL(GCD[FALSE][ITE](x1, x2, x3)) = x1 + x3   
POL(GCD[ITE](x1, x2, x3)) = x2 + x3   
POL(MONUS(x1, x2)) = 0   
POL(S(x1)) = x1   
POL(True) = [1]   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(equal0(x1, x2)) = 0   
POL(equal0[Ite](x1, x2, x3)) = 0   
POL(equal0[True][Ite](x1, x2, x3)) = 0   
POL(monus(x1, x2)) = 0   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:

GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
Defined Rule Symbols:

equal0, equal0[Ite], <, equal0[True][Ite], monus

Defined Pair Symbols:

MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0

Compound Symbols:

c, c1, c3, c6, c8, c9, c11, c4

(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

<'(S(z0), S(z1)) → c3(<'(z0, z1))
We considered the (Usable) Rules:

monus(S(z0), S(z1)) → monus(z0, z1)
And the Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [1]   
POL(<(x1, x2)) = 0   
POL(<'(x1, x2)) = x1·x2   
POL(EQUAL0(x1, x2)) = x1·x2   
POL(EQUAL0[ITE](x1, x2, x3)) = x2·x3   
POL(False) = 0   
POL(GCD(x1, x2)) = [2]x1·x2   
POL(GCD[FALSE][ITE](x1, x2, x3)) = 0   
POL(GCD[ITE](x1, x2, x3)) = x2·x3   
POL(MONUS(x1, x2)) = 0   
POL(S(x1)) = [1] + x1   
POL(True) = 0   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(equal0(x1, x2)) = [2]x22 + x1·x2   
POL(equal0[Ite](x1, x2, x3)) = [1] + [2]x2 + [2]x3 + [2]x2·x3 + x1·x3 + [2]x1·x2   
POL(equal0[True][Ite](x1, x2, x3)) = [2]x1 + [2]x2 + x3 + x32 + x1·x3 + [2]x12 + x22   
POL(monus(x1, x2)) = 0   

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
S tuples:

GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
Defined Rule Symbols:

equal0, equal0[Ite], <, equal0[True][Ite], monus

Defined Pair Symbols:

MONUS, GCD, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0

Compound Symbols:

c, c1, c3, c6, c8, c9, c11, c4

(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace GCD(z0, z1) → c1(GCD[ITE](equal0(z0, z1), z0, z1), EQUAL0(z0, z1)) by

GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
monus(S(z0), S(z1)) → monus(z0, z1)
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
S tuples:

GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
Defined Rule Symbols:

equal0, equal0[Ite], <, equal0[True][Ite], monus

Defined Pair Symbols:

MONUS, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD

Compound Symbols:

c, c3, c6, c8, c9, c11, c4, c1

(23) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

equal0(z0, z1) → equal0[Ite](<(z0, z1), z0, z1)

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
S tuples:

GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
Defined Rule Symbols:

<, monus, equal0[Ite], equal0[True][Ite]

Defined Pair Symbols:

MONUS, <', GCD[ITE], GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD

Compound Symbols:

c, c3, c6, c8, c9, c11, c4, c1

(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace GCD[ITE](False, z0, z1) → c6(GCD[FALSE][ITE](<(z0, z1), z0, z1), <'(z0, z1)) by

GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)), <'(0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0), <'(z0, 0))

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)), <'(0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0), <'(z0, 0))
S tuples:

GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)), <'(0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0), <'(z0, 0))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
Defined Rule Symbols:

<, monus, equal0[Ite], equal0[True][Ite]

Defined Pair Symbols:

MONUS, <', GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD, GCD[ITE]

Compound Symbols:

c, c3, c8, c9, c11, c4, c1, c6

(27) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
S tuples:

GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
Defined Rule Symbols:

<, monus, equal0[Ite], equal0[True][Ite]

Defined Pair Symbols:

MONUS, <', GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD, GCD[ITE]

Compound Symbols:

c, c3, c8, c9, c11, c4, c1, c6, c6

(29) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
We considered the (Usable) Rules:

monus(S(z0), S(z1)) → monus(z0, z1)
And the Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [1]   
POL(<(x1, x2)) = 0   
POL(<'(x1, x2)) = 0   
POL(EQUAL0(x1, x2)) = 0   
POL(EQUAL0[ITE](x1, x2, x3)) = 0   
POL(False) = 0   
POL(GCD(x1, x2)) = x1 + x2   
POL(GCD[FALSE][ITE](x1, x2, x3)) = x3   
POL(GCD[ITE](x1, x2, x3)) = x2 + x3   
POL(MONUS(x1, x2)) = 0   
POL(S(x1)) = 0   
POL(True) = 0   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(equal0[Ite](x1, x2, x3)) = 0   
POL(equal0[True][Ite](x1, x2, x3)) = 0   
POL(monus(x1, x2)) = 0   

(30) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
S tuples:

GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
Defined Rule Symbols:

<, monus, equal0[Ite], equal0[True][Ite]

Defined Pair Symbols:

MONUS, <', GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD, GCD[ITE]

Compound Symbols:

c, c3, c8, c9, c11, c4, c1, c6, c6

(31) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
We considered the (Usable) Rules:

monus(S(z0), S(z1)) → monus(z0, z1)
And the Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(<(x1, x2)) = 0   
POL(<'(x1, x2)) = 0   
POL(EQUAL0(x1, x2)) = 0   
POL(EQUAL0[ITE](x1, x2, x3)) = 0   
POL(False) = 0   
POL(GCD(x1, x2)) = x1 + x2   
POL(GCD[FALSE][ITE](x1, x2, x3)) = x3   
POL(GCD[ITE](x1, x2, x3)) = x2 + x3   
POL(MONUS(x1, x2)) = 0   
POL(S(x1)) = [1]   
POL(True) = 0   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(equal0[Ite](x1, x2, x3)) = [1]   
POL(equal0[True][Ite](x1, x2, x3)) = 0   
POL(monus(x1, x2)) = 0   

(32) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
S tuples:

GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
Defined Rule Symbols:

<, monus, equal0[Ite], equal0[True][Ite]

Defined Pair Symbols:

MONUS, <', GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD, GCD[ITE]

Compound Symbols:

c, c3, c8, c9, c11, c4, c1, c6, c6

(33) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
We considered the (Usable) Rules:

monus(S(z0), S(z1)) → monus(z0, z1)
<(z0, 0) → False
<(0, S(z0)) → True
<(S(z0), S(z1)) → <(z0, z1)
And the Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [2]   
POL(<(x1, x2)) = [1]   
POL(<'(x1, x2)) = 0   
POL(EQUAL0(x1, x2)) = [1]   
POL(EQUAL0[ITE](x1, x2, x3)) = 0   
POL(False) = 0   
POL(GCD(x1, x2)) = [2] + x2 + [2]x1·x2   
POL(GCD[FALSE][ITE](x1, x2, x3)) = [2] + x1·x3   
POL(GCD[ITE](x1, x2, x3)) = x3 + [2]x2·x3   
POL(MONUS(x1, x2)) = 0   
POL(S(x1)) = [1]   
POL(True) = [1]   
POL(c(x1)) = x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1, x2)) = x1 + x2   
POL(equal0[Ite](x1, x2, x3)) = [2]x2·x3 + [2]x22   
POL(equal0[True][Ite](x1, x2, x3)) = [2] + [2]x2 + [2]x3 + x32 + [2]x1·x3 + x1·x2 + x22   
POL(monus(x1, x2)) = 0   

(34) Obligation:

Complexity Dependency Tuples Problem
Rules:

<(S(z0), S(z1)) → <(z0, z1)
<(0, S(z0)) → True
<(z0, 0) → False
monus(S(z0), S(z1)) → monus(z0, z1)
equal0[Ite](False, z0, z1) → False
equal0[Ite](True, z0, z1) → equal0[True][Ite](<(z1, z0), z0, z1)
equal0[True][Ite](False, z0, z1) → False
equal0[True][Ite](True, z0, z1) → True
Tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
S tuples:

GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
K tuples:

MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
EQUAL0[ITE](True, z0, z1) → c11(<'(z1, z0))
GCD[FALSE][ITE](True, z0, z1) → c9(GCD(monus(z0, z1), z1), MONUS(z0, z1))
<'(S(z0), S(z1)) → c3(<'(z0, z1))
GCD[ITE](False, 0, S(z0)) → c6(GCD[FALSE][ITE](True, 0, S(z0)))
GCD[ITE](False, S(z0), S(z1)) → c6(GCD[FALSE][ITE](<(z0, z1), S(z0), S(z1)), <'(S(z0), S(z1)))
EQUAL0(z0, z1) → c4(EQUAL0[ITE](<(z0, z1), z0, z1))
EQUAL0(z0, z1) → c4(<'(z0, z1))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
Defined Rule Symbols:

<, monus, equal0[Ite], equal0[True][Ite]

Defined Pair Symbols:

MONUS, <', GCD[FALSE][ITE], EQUAL0[ITE], EQUAL0, GCD, GCD[ITE]

Compound Symbols:

c, c3, c8, c9, c11, c4, c1, c6, c6

(35) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

GCD[ITE](False, z0, 0) → c6(GCD[FALSE][ITE](False, z0, 0))
GCD[FALSE][ITE](False, z0, z1) → c8(GCD(z1, monus(z1, z0)), MONUS(z1, z0))
GCD(z0, z1) → c1(GCD[ITE](equal0[Ite](<(z0, z1), z0, z1), z0, z1), EQUAL0(z0, z1))
MONUS(S(z0), S(z1)) → c(MONUS(z0, z1))
Now S is empty

(36) BOUNDS(1, 1)